Flows, congruences, and factorizations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toeplitz Car Flows and Type I Factorizations

Toeplitz CAR flows are a class of E0-semigroups including the first type III example constructed by R. T. Powers. We show that the Toeplitz CAR flows contain uncountably many mutually non cocycle conjugate E0-semigroups of type III. We also generalize the type III criterion for Toeplitz CAR flows employed by Powers (and later refined by W. Arveson), and show that Toeplitz CAR flows are always e...

متن کامل

Isospectral Flows and Abstract Matrix Factorizations * Moody T . Chu ? and Larry

A general framework for constructing isospectral flows in the space gl(n) of n by n matrices is proposed. Depending upon how gl(n) is split, this framework gives rise to different types of abstract matrix factorizations. When sampled at integer times, these flows naturally define special iterative processes, and each flow is associated with the sequence generated by the corresponding abstract f...

متن کامل

SOME INTUITIONISTIC FUZZY CONGRUENCES

First, we introduce the concept of intuitionistic fuzzy group congruenceand we obtain the characterizations of intuitionistic fuzzy group congruenceson an inverse semigroup and a T^{*}-pure semigroup, respectively. Also,we study some properties of intuitionistic fuzzy group congruence. Next, weintroduce the notion of intuitionistic fuzzy semilattice congruence and we givethe characterization of...

متن کامل

Kida’s Formula and Congruences

Let f be a modular eigenform of weight at least two and let F be a finite abelian extension of Q. Fix an odd prime p at which f is ordinary in the sense that the p Fourier coefficient of f is not divisible by p. In Iwasawa theory, one associates two objects to f over the cyclotomic Zp-extension F∞ of F : a Selmer group Sel(F∞, Af ) (whereAf denotes the divisible version of the two-dimensional G...

متن کامل

Diophantine Equations and Congruences

We present conditions for quadratic Diophantine equations of the form ax2 − by2 = ±1, (where 1 < a < b are integers) for which there are no solutions (x, y), yet for which there are solutions modulo n for all n ≥ 1. This generalizes work in the literature which follow as very special cases. Mathematics Subject Classification: Primary: 11D09, 11R11, 11A55; Secondary: 11R29

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 1994

ISSN: 0166-8641

DOI: 10.1016/0166-8641(94)90072-8